Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(8): 1621-1634.e9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38377997

RESUMO

Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.


Assuntos
Besouros , Simbiose , Animais , Besouros/fisiologia , Besouros/microbiologia , Besouros/genética , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Evolução Biológica , Evolução Molecular
2.
mBio ; 14(4): e0314022, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37382438

RESUMO

Osedax, the deep-sea annelid found at sunken whalefalls, is known to host Oceanospirillales bacterial endosymbionts intracellularly in specialized roots, which help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks. During a 14-yr study, we reveal a dynamic, yet persistent, shift of Campylobacterales integrated into the epidermis of Osedax, which change over time as the whale carcass degrades on the sea floor. The Campylobacterales associated with seven species of Osedax, which comprise 67% of the bacterial community on the trunk, appear initially dominated by the genus Arcobacter (at early time points <24 mo), the Sulfurospirillum at intermediate stages (~50 mo), and the Sulfurimonas at later stages (>140 mo) of whale carcass decomposition. Metagenome analysis of the epibiont metabolic capabilities suggests potential for a transition from heterotrophy to autotrophy and differences in their capacity to metabolize oxygen, carbon, nitrogen, and sulfur. Compared to free-living relatives, the Osedax epibiont genomes were enriched in transposable elements, implicating genetic exchange on the host surface, and contained numerous secretions systems with eukaryotic-like protein (ELP) domains, suggesting a long evolutionary history with these enigmatic, yet widely distributed deep-sea worms. IMPORTANCE Symbiotic associations are widespread in nature and we can expect to find them in every type of ecological niche. In the last twenty years, the myriad of functions, interactions and species comprising microbe-host associations has fueled a surge of interest and appreciation for symbiosis. During this 14-year study, we reveal a dynamic population of bacterial epibionts, integrated into the epidermis of 7 species of a deep-sea worm group that feeds exclusively on the remains of marine mammals. The bacterial genomes provide clues of a long evolutionary history with these enigmatic worms. On the host surface, they exchange genes and appear to undergo ecological succession, as the whale carcass habitat degrades over time, similar to what is observed for some free-living communities. These, and other annelid worms are important keystone species for diverse deep-sea environments, yet the role of attached external bacteria in supporting host health has received relatively little attention.

3.
Nat Commun ; 14(1): 2814, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198188

RESUMO

Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.


Assuntos
Anelídeos , Poliquetos , Animais , Simbiose/genética , Anelídeos/genética , Poliquetos/genética , Poliquetos/metabolismo , Genoma/genética , Genômica , Filogenia
4.
J Parasitol ; 109(2): 135-144, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37103004

RESUMO

Pterobdella occidentalis n. sp. (Hirudinida: Piscicolidae) is described from the longjaw mudsucker, Gillichthys mirabilis Cooper, 1864, and the staghorn sculpin, Leptocottus armatus Girard, 1854, in the eastern Pacific, and the diagnosis of Pterobdella abditovesiculata (Moore, 1952) from the 'o'opu 'akupa, Eleotris sandwicensis Vaillant and Sauvage, 1875, from Hawaii is amended. The morphology of both species conforms with the genus Pterobdella in possessing a spacious coelom, well-developed nephridial system, and 2 pairs of mycetomes. Originally described as Aestabdella abditovesiculata, P. occidentalis (present along the U.S. Pacific Coast), can be distinguished from most congeners by its metameric pigmentation pattern and diffuse pigmentation on the caudal sucker. Based on mitochondrial gene sequences, including cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit I (ND1), P. occidentalis forms a distinct polyphyletic clade with Pterobdella leiostomi from the western Atlantic. Based on COI, ND1, and the 18S rRNA genes, other leech species most closely related to P. occidentalis include Pterobdella arugamensis from Iran, Malaysia, and possibly Borneo, which likely represent distinct species, and Pterobdella abditovesiculata from Hawaii, one of only a few endemic fish parasites in Hawaii. Like P. abditovesiculata, P. arugamensis, and Petrobdella amara, P. occidentalis is often found in estuarine environments, frequently infecting hosts adapted to a wide range of salinity, temperature, and oxygen. The physiological plasticity of P. occidentalis and the longjaw mudsucker host, and the ease of raising P. occidentalis in the lab, make it an excellent candidate for the study of leech physiology, behavior, and possible bacterial symbionts.


Assuntos
Sanguessugas , Mirabilis , Perciformes , Animais , Peixes , Oxigênio , Sanguessugas/genética
5.
Front Microbiol ; 13: 1113237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713196

RESUMO

Persistent bacterial presence is believed to play an important role in host adaptation to specific niches that would otherwise be unavailable, including the exclusive consumption of blood by invertebrate parasites. Nearly all blood-feeding animals examined so far host internal bacterial symbionts that aid in some essential aspect of their nutrition. Obligate blood-feeding (OBF) invertebrates exist in the oceans, yet symbiotic associations between them and beneficial bacteria have not yet been explored. This study describes the microbiome of 6 phylogenetically-diverse species of marine obligate blood-feeders, including leeches (both fish and elasmobranch specialists; e.g., Pterobdella, Ostreobdella, and Branchellion), isopods (e.g., Elthusa and Nerocila), and a copepod (e.g., Lernanthropus). Amplicon sequencing analysis revealed the blood-feeding invertebrate microbiomes to be low in diversity, compared to host fish skin surfaces, seawater, and non-blood-feeding relatives, and dominated by only a few bacterial genera, including Vibrio (100% prevalence and comprising 39%-81% of the average total recovered 16S rRNA gene sequences per OBF taxa). Vibrio cells were localized to the digestive lumen in and among the blood meal for all taxa examined via fluorescence microscopy. For Elthusa and Branchellion, Vibrio cells also appeared intracellularly within possible hemocytes, suggesting an interaction with the immune system. Additionally, Vibrio cultivated from four of the obligate blood-feeding marine taxa matched the dominant amplicons recovered, and all but one was able to effectively lyse vertebrate blood cells. Bacteria from 2 additional phyla and 3 families were also regularly recovered, albeit in much lower abundances, including members of the Oceanospirillaceae, Flavobacteriacea, Porticoccaceae, and unidentified members of the gamma-and betaproteobacteria, depending on the invertebrate host. For the leech Pterobdella, the Oceanospirillaceae were also detected in the esophageal diverticula. For two crustacean taxa, Elthusa and Lernanthropus, the microbial communities associated with brooded eggs were very similar to the adults, indicating possible direct transmission. Virtually nothing is known about the influence of internal bacteria on the success of marine blood-feeders, but this evidence suggests their regular presence in marine parasites from several prominent groups.

7.
BMC Biol ; 19(1): 8, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33455582

RESUMO

BACKGROUND: Numerous deep-sea invertebrates, at both hydrothermal vents and methane seeps, have formed symbiotic associations with internal chemosynthetic bacteria in order to harness inorganic energy sources typically unavailable to animals. Despite success in nearly all marine habitats and their well-known associations with photosynthetic symbionts, Cnidaria remain one of the only phyla present in the deep-sea without a clearly documented example of dependence on chemosynthetic symbionts. RESULTS: A new chemosynthetic symbiosis between the sea anemone Ostiactis pearseae and intracellular bacteria was discovered at ~ 3700 m deep hydrothermal vents in the southern Pescadero Basin, Gulf of California. Unlike most sea anemones observed from chemically reduced habitats, this species was observed in and amongst vigorously venting fluids, side-by-side with the chemosynthetic tubeworm Oasisia aff. alvinae. Individuals of O. pearseae displayed carbon, nitrogen, and sulfur tissue isotope values suggestive of a nutritional strategy distinct from the suspension feeding or prey capture conventionally employed by sea anemones. Molecular and microscopic evidence confirmed the presence of intracellular SUP05-related bacteria housed in the tentacle epidermis of O. pearseae specimens collected from 5 hydrothermally active structures within two vent fields ~ 2 km apart. SUP05 bacteria (Thioglobaceae) dominated the O. pearseae bacterial community, but were not recovered from other nearby anemones, and were generally rare in the surrounding water. Further, the specific Ostiactis-associated SUP05 phylotypes were not detected in the environment, indicating a specific association. Two unusual candidate bacterial phyla (the OD1 and BD1-5 groups) appear to associate exclusively with O. pearseae and may play a role in symbiont sulfur cycling. CONCLUSION: The Cnidarian Ostiactis pearseae maintains a physical and nutritional alliance with chemosynthetic bacteria. The mixotrophic nature of this symbiosis is consistent with what is known about other cnidarians and the SUP05 bacterial group, in that they both form dynamic relationships to succeed in nature. The advantages gained by appropriating metabolic and structural resources from each other presumably contribute to their striking abundance in the Pescadero Basin, at the deepest known hydrothermal vents in the Pacific Ocean.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Fontes Hidrotermais , Anêmonas-do-Mar/metabolismo , Simbiose , Fenômenos Fisiológicos da Nutrição Animal , Animais , México , Oceano Pacífico
8.
Environ Microbiol Rep ; 13(2): 104-111, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33196140

RESUMO

Relationships fueled by sulfide between deep-sea invertebrates and bacterial symbionts are well known, yet the diverse overlapping factors influencing symbiont specificity are complex. For animals that obtain their symbionts from the environment, both host identity and geographic location can impact the ultimate symbiont partner. Bacterial symbionts were analysed for three co-occurring species each of Bathymodiolus mussels and vestimentiferan tubeworms, from three deep methane seeps off the west coast of Costa Rica. The bacterial internal transcribed spacer gene was analysed via direct and barcoded amplicon sequencing to reveal fine-scale symbiont diversity. Each of the three mussel species (B. earlougheri, B. billschneideri and B. nancyschneideri) hosted genetically distinct thiotrophic endosymbionts, despite living nearly side-by-side in their habitat, suggesting that host identity is crucial in driving symbiont specificity. The dominant thiotrophic symbiont of co-occurring tubeworms Escarpia spicata and Lamellibrachia (L. barhami and L. donwalshi), on the other hand, was identical regardless of host species or sample location, suggesting lack of influence by either factor on symbiont selectivity in this group of animals. These findings highlight the specific, yet distinct, influences on the environmental acquisition of symbionts in two foundational invertebrates with similar lifestyles, and provide a rapid, precise method of examining symbiont identities.


Assuntos
Bivalves , Poliquetos , Animais , Bactérias/genética , Bivalves/microbiologia , Metano , Poliquetos/microbiologia , Simbiose
9.
Sci Adv ; 6(14): eaay8562, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284974

RESUMO

Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ13C of -44 to -58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of 13C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150-million year-old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation.


Assuntos
Anelídeos/microbiologia , Organismos Aquáticos/microbiologia , Bactérias , Ecossistema , Água do Mar/microbiologia , Simbiose , Animais , Bactérias/classificação , Bactérias/citologia , Bactérias/metabolismo , Bactérias/ultraestrutura , Metano/metabolismo , RNA Ribossômico 16S
10.
Microbiome ; 6(1): 167, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231937

RESUMO

BACKGROUND: Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS: This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.


Assuntos
Bactérias/isolamento & purificação , Tentilhões/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Evolução Biológica , Clima , DNA Bacteriano/genética , Equador , Fezes/microbiologia , Tentilhões/classificação , Tentilhões/genética , Trato Gastrointestinal/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
11.
PeerJ ; 6: e4793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785353

RESUMO

The beetle genus Cephaloleia has evolved in association with tropical ginger plants and for many species their specific host plant associations are known. Here we show that the core microbiome of six closely related Costa Rican Cephaloleia species comprises only eight bacterial groups, including members of the Acinetobacter, Enterobacteriacea, Pseudomonas, Lactococcus, and Comamonas. The Acinetobacter and Enterobacteriacea together accounted for 35% of the total average 16S rRNA ribotypes recovered from all specimens. Further, microbiome diversity and community structure was significantly linked to beetle diet breadth, between those foraging on less than two plant types (specialists) versus over nine plant types (generalists). Moraxellaceae, Enterobacteriaceae, and Pseudomonadaceae were highly prevalent in specialist species, and also present in eggs, while Rickettsiaceae associated exclusively with generalist beetles. Bacteria isolated from Cephaloleia digestive systems had distinct capabilities and suggested a possible beneficial role in both digestion of plant-based compounds, including xylose, mannitol, and pectin, and possible detoxification, via lipases. Cephaloleia species are currently expanding their diets to include exotic invasive plants, yet it is unknown whether their microbial community plays a role in this transition. In this study, colonization of invasive plants was correlated with a dysbiosis of the microbiome, suggesting a possible relationship between gut bacteria and niche adaptation.

12.
Zootaxa ; 4377(4): 451-489, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29690036

RESUMO

We incorporate DNA sequences from a comprehensive sampling of taxa to provide an updated phylogeny of Osedax and discuss the remarkable diversity of this clade of siboglinids. We formally describe 14 new species of Osedax from Monterey Bay, California, USA, raising the total number of properly named Osedax species to 25. These new species had formerly been recognized by informal names in various publications, and on GenBank. The descriptions document the occurrence of dwarf males in five of the new species. The distribution for the 19 species of Osedax known to occur in Monterey Bay across depths from 385 to 2898 meters and various bone substrates is documented. The exploitation of extant bird and marine turtle bones by Osedax is reported for the first time.


Assuntos
Anelídeos , Animais , Osso e Ossos , California , Masculino , Filogenia , Poliquetos
13.
Genome Biol Evol ; 10(2): 680-693, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420776

RESUMO

Phytophagous stink bugs are globally distributed and many harbor vertically inherited bacterial symbionts that are extracellular, yet little is known about how the symbiont's genomes have evolved under this transmission strategy. Genome reduction is common in insect intracellular symbionts but limited genome sampling of the extracellular symbionts of distantly related stink bugs has precluded inferring patterns of extracellular symbiont genome evolution. To address this knowledge gap, we completely sequenced the genomes of the uncultivable bacterial symbionts of four neotropical stink bugs of the Edessa genus. Phylogenetic and comparative analyses indicated that the symbionts form a clade within the Pantoea genus and their genomes are highly reduced (∼0.8 Mb). Furthermore, genome synteny analysis and a jackknife approach for phylogenetic reconstruction, which corrected for long branch attraction artifacts, indicated that the Edessa symbionts were the result of a single symbiotic event that was distinct from the symbiosis event giving rise to Candidatus "Pantoea carbekii," the extracellular symbiont of the invasive pentatomid stink bug, Halyomorpha halys. Metabolic functions inferred from the Edessa symbiont genomes suggests a shift in genomic composition characteristic of its lifestyle in that they retained many host-supportive functions while undergoing dramatic gene loss and establishing a stable relationship with their host insects. Given the undersampled nature of extracellular insect symbionts, this study is the first comparative analysis of these symbiont genomes from four distinct Edessa stink bug species. Finally, we propose the candidate name "Candidatus Pantoea edessiphila" for the species of these symbionts with strain designations according to their host species.


Assuntos
Especiação Genética , Genoma Bacteriano , Heterópteros/microbiologia , Pantoea/genética , Animais , Ciclo do Ácido Cítrico , Pantoea/metabolismo , Simbiose , Terminologia como Assunto
14.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28724734

RESUMO

Hydrothermal vent communities are distributed along mid-ocean spreading ridges as isolated patches. While distance is a key factor influencing connectivity among sites, habitat characteristics are also critical. The Pescadero Basin (PB) and Alarcón Rise (AR) vent fields, recently discovered in the southern Gulf of California, are bounded by previously known vent localities (e.g. Guaymas Basin and 21° N East Pacific Rise); yet, the newly discovered vents differ markedly in substrata and vent fluid attributes. Out of 116 macrofaunal species observed or collected, only three species are shared among all four vent fields, while 73 occur at only one locality. Foundation species at basalt-hosted sulfide chimneys on the AR differ from the functional equivalents inhabiting sediment-hosted carbonate chimneys in the PB, only 75 km away. The dominant species of symbiont-hosting tubeworms and clams, and peripheral suspension-feeding taxa, differ between the sites. Notably, the PB vents host a limited and specialized fauna in which 17 of 26 species are unknown at other regional vents and many are new species. Rare sightings and captured larvae of the 'missing' species revealed that dispersal limitation is not responsible for differences in community composition at the neighbouring vent localities. Instead, larval recruitment-limiting habitat suitability probably favours species differentially. As scenarios develop to design conservation strategies around mining of seafloor sulfide deposits, these results illustrate that models encompassing habitat characteristics are needed to predict metacommunity structure.


Assuntos
Biodiversidade , Ecossistema , Fontes Hidrotermais , Animais , Bivalves , California , Invertebrados
15.
FEMS Microbiol Ecol ; 93(3)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986828

RESUMO

Rubyspira osteovora is an unusual deep-sea snail from Monterey Canyon, California. This group has only been found on decomposing whales and is thought to use bone as a novel source of nutrition. This study characterized the gut microbiome of R. osteovora, compared to the surrounding environment, as well as to other deep-sea snails with more typical diets. Analysis of 16S rRNA gene sequences revealed that R. osteovora digestive tissues host a much lower bacterial diversity (average Shannon index of 1.9; n = 12), compared to environmental samples (average Shannon index of 4.4; n = 2) and are dominated by two bacterial genera: Mycoplasma and Psychromonas (comprising up to 56% and 42% average total recovered sequences, respectively). These two bacteria, along with Psychrilyobacter sp. (∼16% average recovered sequences), accounted for between 43% and 92% of the total recovered sequences in individual snail digestive systems, with other OTUs present at much lower proportions. The relative abundance of these three groups remained similar over 6 years of sampling (collection date was not shown to be a significant predictor of community structure), suggesting a long-term association. Furthermore, these bacterial genera were either not present (Mycoplasma and Psychromonas) or at very low abundance (<0.04% for Psychrilyobacter), in environmental samples and other deep-sea gastropods, supporting the uniqueness of the R. osteovora gut microbiome.


Assuntos
Microbiota/genética , Caramujos/microbiologia , Animais , Bactérias/genética , California , Gammaproteobacteria/genética , Mycoplasma/genética , Filogenia , RNA Ribossômico 16S/genética
16.
Microbiologyopen ; 5(3): 479-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26918550

RESUMO

Betaproteobacteria were the most common isolates from the water-filled tank of a Costa Rican bromeliad. Isolates included eight species from the orders Neisseriales and Burkholderiales, with close relatives recovered previously from tropical soils, wetlands, freshwater, or in association with plants. Compared to close relatives, the isolates displayed high temperature and comparatively low pH optima, reflecting the tropical, acidic nature of the bromeliad tank. Bromeliad-associated bacteria most closely related to Chromobacterium, Herbaspirillum, and Aquitalea were all isolated exclusively at pH 6, while Ralstonia, Cupriavidus, and three species of Burkholderia were isolated mostly at pH 4. Activity profiles for the isolates suggest pervasive capabilities for the breakdown of plant-sourced organics, including d-galacturonic acid, mannitol, d-xylose, and l-phenylalanine, also reflecting a niche dominated by decomposition of leaves from the overlying canopy, which become entrained in the tanks. Metabolic activity profiles were overlapping between the Burkholderiales, isolated at pH 4, and the Neisseriales, isolated at pH 6, suggesting that plant material decomposition, which is presumably the underlying process sustaining the tank community and possibly the plant itself, occurs in the tanks at both pH extremes. These results suggest that bromeliad-associated betaproteobacteria may play an important role in the cycling of carbon in this unusual aquatic habitat.


Assuntos
Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Bromeliaceae/metabolismo , Bromeliaceae/microbiologia , Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Biodiversidade , Ciclo do Carbono/fisiologia , Costa Rica , Temperatura Alta , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Termotolerância/genética , Termotolerância/fisiologia , Clima Tropical , Microbiologia da Água
17.
Microbiome ; 3: 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830022

RESUMO

BACKGROUND: Termites and their microbial gut symbionts are major recyclers of lignocellulosic biomass. This important symbiosis is obligate but relatively open and more complex in comparison to other well-known insect symbioses such as the strict vertical transmission of Buchnera in aphids. The relative roles of vertical inheritance and environmental factors such as diet in shaping the termite gut microbiome are not well understood. RESULTS: The gut microbiomes of 66 specimens representing seven higher and nine lower termite genera collected in Australia and North America were profiled by small subunit (SSU) rRNA amplicon pyrosequencing. These represent the first reported culture-independent gut microbiome data for three higher termite genera: Tenuirostritermes, Drepanotermes, and Gnathamitermes; and two lower termite genera: Marginitermes and Porotermes. Consistent with previous studies, bacteria comprise the largest fraction of termite gut symbionts, of which 11 phylotypes (6 Treponema, 1 Desulfarculus-like, 1 Desulfovibrio, 1 Anaerovorax-like, 1 Sporobacter-like, and 1 Pirellula-like) were widespread occurring in ≥50% of collected specimens. Archaea are generally considered to comprise only a minority of the termite gut microbiota (<3%); however, archaeal relative abundance was substantially higher and variable in a number of specimens including Macrognathotermes, Coptotermes, Schedorhinotermes, Porotermes, and Mastotermes (representing up to 54% of amplicon reads). A ciliate related to Clevelandella was detected in low abundance in Gnathamitermes indicating that protists were either reacquired after protists loss in higher termites or persisted in low numbers across this transition. Phylogenetic analyses of the bacterial communities indicate that vertical inheritance is the primary force shaping termite gut microbiota. The effect of diet is secondary and appears to influence the relative abundance, but not membership, of the gut communities. CONCLUSIONS: Vertical inheritance is the primary force shaping the termite gut microbiome indicating that species are successfully and faithfully passed from one generation to the next via trophallaxis or coprophagy. Changes in relative abundance can occur on shorter time scales and appear to be an adaptive mechanism for dietary fluctuations.

18.
Comput Struct Biotechnol J ; 13: 18-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755850

RESUMO

RNA-Seq was used to examine the microbial, eukaryotic, and viral communities in water catchments ('tanks') formed by tropical bromeliads from Costa Rica. In total, transcripts with taxonomic affiliation to a wide array of bacteria, archaea, and eukaryotes, were observed, as well as RNA-viruses that appeared related to the specific presence of eukaryotes. Bacteria from 25 phyla appeared to comprise the majority of transcripts in one tank (Wg24), compared to only 14 phyla in the other (Wg25). Conversely, eukaryotes from only 16 classes comprised the majority of transcripts in Wg24, compared to 24 classes in the Wg25, revealing a greater eukaryote diversity in the latter. Given that these bromeliads had tanks of similar size (i.e. vertical oxygen gradient), and were neighboring with presumed similar light regime and acquisition of leaf litter through-fall, it is possible that pH was the factor governing these differences in bacterial and eukaryotic communities (Wg24 had a tank pH of 3.6 and Wg25 had a tank pH of 6.2). Archaeal diversity was similar in both tanks, represented by 7 orders, with the exception of Methanocellales transcripts uniquely recovered from Wg25. Based on measures of FPKG (fragments mapped per kilobase of gene length), genes involved in methanogenesis, in addition to a spirochaete flagellin gene, were among those most highly expressed in Wg25. Conversely, aldehyde dehydrogenase and monosaccharide-binding protein were among genes most highly expressed in Wg24. The ability to observe specific presence of insect, plant, and fungi-associated RNA-viruses was unexpected. As with other techniques, there are inherent biases in the use of RNA-Seq, however, these data suggest the possibility of understanding the entire community, including ecological interactions, via simultaneous analysis of microbial, eukaryotic, and viral transcripts.

19.
Appl Environ Microbiol ; 80(23): 7405-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239909

RESUMO

Bdellovibrio bacteriovorus is a Gram-negative predator of other Gram-negative bacteria. Interestingly, Bdellovibrio bacteriovorus 109J cells grown in coculture with Escherichia coli ML-35 prey develop into a spatially organized two-dimensional film when located on a nutrient-rich surface. From deposition of 10 µl of a routine cleared coculture of B. bacteriovorus and E. coli cells, the cells multiply into a macroscopic community and segregate into an inner, yellow circular region and an outer, off-white region. Fluorescence in situ hybridization and atomic force microscopy measurements confirm that the mature film is spatially organized into two morphologically distinct Bdellovibrio populations, with primarily small, vibroid cells in the center and a complex mixture of pleomorphic cells in the outer radii. The interior region cell population exhibits the hunting phenotype while the outer region cell subpopulation does not. Crowding and high nutrient availability with limited prey appear to favor diversification of the B. bacteriovorus population into two distinct, thriving subpopulations and may be beneficial to the persistence of B. bacteriovorus in biofilms.


Assuntos
Bdellovibrio/citologia , Bdellovibrio/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Interações Microbianas , Meios de Cultura/química , Hibridização in Situ Fluorescente , Microscopia de Força Atômica
20.
Front Microbiol ; 5: 349, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076943

RESUMO

Interdomain symbioses with bacteria allow insects to take advantage of underutilized niches and provide the foundation for their evolutionary success in neotropical ecosystems. The gut microbiota of 13 micro-allopatric tropical pentatomid species, from a Costa Rican lowland rainforest, was characterized and compared with insect and host plant phylogenies. Like other families within the Pentatomomorpha, these insects (within seven genera-Antiteuchus, Arvelius, Edessa, Euschistus, Loxa, Mormidea, and Sibaria) house near-monocultures of gamma-proteobacteria in midgut crypts, comprising three distinct lineages within the family Enterobacteriaceae. Identity of the dominant bacteria (78-100% of the recovered 16S rRNA genes) was partially congruent with insect phylogeny, at the level of subfamily and tribe, with bacteria closely related to Erwinia observed in six species of the subfamily Pentatominae, and bacteria in a novel clade of Enterobacteriaceae for seven species within the subfamilies Edessinae and Discocephalinae. Symbiont replacement (i.e., bacterial "contamination" from the environment) may occur during maternal transmission by smearing of bacteria onto the egg surfaces during oviposition. This transmission strategy was experimentally confirmed for Sibaria englemani, and suspected for four species from two subfamilies, based on observation of egg probing by nymphs. Symbiont-deprived S. englemani, acquired via egg surface sterilization, exhibited significantly extended second instars (9.1 days compared with 7.9 days for symbiotic nymphs; p = 0.0001, Wilcoxon's rank with Bonferroni correction), slower linearized growth rates (p = 0.005, Welch 2-sample t-test), and qualitative differences in ceca morphology, including increased translucency of crypts, elongation of extracellular cavities, and distribution of symbionts, compared to symbiotic nymphs. Combined, these results suggest a role of the symbiont in host development, the reliable transference of symbionts via egg surfaces, and a suggestion of co-evolution between symbiont and tropical pentatomid host insects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...